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Abstract. The purpose of this paper is to initiate the study of a new kind of 
asymptotic series expansion for solutions of differential equations containing a pa- 
rameter. We obtain uniform asymptotic solutions for certain equations of the form 

E2ny" - a(t, E)y, ( )'-d/dt, 

where n is a positive integer, t and E are real variables ranging over It| < to, 0 < e 
< e(, and a is a function infinitely differentiable on the closure of this domain. We 
require that a(t, E) satisfy conditions which can be regarded as generalized non- 
turning-point conditions. These conditions imply the absence of secondary turning 
points, and reduce in the simplest case to the condition a(t, 0) % 0, but also include 
cases (the interesting ones) in which a(O, 0) = 0. e 

1. Introduction. The purpose of this paper is to initiate the study of a new kind 
of asymptotic series expansion for solutions of differential equations containing a 
parameter. We shall obtain uniform asymptotic solutions for certain equations of 
the form 

(l-1) E2Ony" = a(t, E)y, ( )' = d/dt, 

where n is a positive integer, t and E are real variables ranging over It ? to, 0 < E 

< Eo, and a is a function infinitely differentiable on the closure of this domain. We 
shall thus present a purely real variable theory. 

The asymptotic theory of (1-1) (as e approaches 0) has been divided into two 
cases, depending on whether or not a(t, 0) has isolated zeros. If a(t, 0) does not 
vanish then (1-1) falls within the scope of a systematic theory ([1, Chapter 6]; [2]). 
However, if a(t, 0) has isolated zeros, individual representatives of (1-1) become 
highly idiosyncratic, and there exists a profound literature devoted to what can be 
fairly called the investigation of special cases (see the bibliography of [3]). Such 
problems are called "turning point" or "transition point" problems and the zeros 
of a(t, 0) are called "turning" or "transition" points. 

We shall solve a class of problems for which the above classification is inade- 
quate. We shall require that (1-1) satisfy conditions (given in Section 2) which can 
be regarded as generalized non-turning-point conditions. These conditions imply 
the absence of what have come to be known informally as secondary turning points, 
and reduce in the simplest case to the condition a(t, 0) - 0, but also include cases 
(the interesting ones) in which a(O, 0) = 0. Our conditions have their basis in a 
formal analysis which has been carried out for general linear equations by Iwano 
and Sibuya [4]. They determine a finite set of differential equations which arise 
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2 GILBERT STENGLE 

from (1-1) by transformations of the independent variable depending on the pa- 
rameter e. Roughly put, each transformed equation describes (1-1) in a different 
asymptotic scale in e. The values of t corresponding to turning points of these prob- 
lems, with some possible exceptions, are the secondary turning points. Since these 
values of t in general depend on E, the secondary turning points typically lie on a 
curve in (t, e) space, that is they lie on a subvariety of (t, e) space (which in our case 
is usually an algebraic subvariety). We do not wish to perpetuate the distinction 
between turning point and secondary turning point since the point of [6] and of this 
paper is that the secondary turning points, properly defined, are in fact the "true" 
turning points of (1-1). Ideally the best terminology would simply use the term 
"turning point" in an extended sense. However, it does not seem possible to do this 
without confusion (e.g. change "varieties" to "points" in our title and we refer to 
a problem solved by Liouville). We have therefore selected the term turning variety. 
We are also reinforced in this choice by the fact that in applying the ideas of this 
paper to problems containing several parameters, sets arise which in standard 
mathematical usage are described by no term other than "variety." 

We can now describe our main result, Theorem 2 below, as uniform asymptotic 
solution of (1-1) in the absence of turning varieties. 

The following formal scheme can be regarded as a point of departure for our 
analysis. 

The transformation Cny-ly' = r leads to the Ricatti equation 

(1-2) Enr'+r2-a=O. 

The equation o-r' + r2 - a(t, e) = 0 has formal c-power series solutions 

EkRk 

k=O 

where Ro is a root, call it X, of 

(1-2)o R02 - a = 0 

and 

(1-2)k Rk+ 1 dRk RiR 2X dt x,i+j=k+1; i,J>O J 

Replacing o- by Cn we obtain the formal expressions 

(1-3) r = x: ERk(t, E), 
k=O 

(1-4) y = exp {e-8 , E f 
Rk(S E)ds} . 

k=Or 

There is a considerable arbitrariness in this procedure and the terms of the resulting 
formal series have no simple distinguishing algebraic features purely as functions 
of (t, e). In fact there are many slight variants of this scheme which would be equally 
satisfactory for our purposes. We mention the following example solely for purposes 
of illustration. Let a(t, e) = a(t, e) + E2nb(t, E) where a is, say, the (2n - 1)th partial 
sum of the e-Taylor series of a. Then the formal v-power series solution of 

(1-5) ar'+r2-a - -2b = O 
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with o- replaced by en could be used instead of (1-3). 
We will expend our main effort in making a detailed formal analysis of formulas 

(1-3) and (1-4), accounting in a general way for the nonuniqueness illustrated above 
(Section 6), establishing precise formal properties (Theorem 1, Section 9) and 
elucidating their asymptotic character (Theorem 2, Section 10). To accomplish this 
we require new definitions of formal and asymptotic series (Section 6) using notions 
from the local theory of functions of several variables which are standard but which 
do not seem to have been applied before to asymptotics. 

Finally, to emphasize that we are dealing with a natural and effective means for 
solving certain kinds of problems, we have attempted to include an informal sketch 
of our analysis in a continued section consisting of specific examples which also 
illustrate our hypotheses and results. In particular we analyse the scattering-like 
problem 

(1-6) E2y" ? (9(t) + E)y = 0 

where q is a nonnegative, infinitely differentiable function which has a single zero 
of even order greater than two (say 6) at t = 0 and is constant for Itj _ 1. 

Some of our results appear in Stengle [5]. We also note that Evgrafov and 
Fedoryuk [6] study the leading term of our expansion in a function-theoretic con- 
text. The author is indebted to Professor N. Kazarinoff for calling his attention to 
problem (1-6). 

2. Location of Turning Varieties. Basic Hypotheses. We first state some pre- 
liminary restrictions which we shall either take for granted without further mention 
or which happen to be consequences of hypotheses stated more formally below. A 
necessary condition which we must impose is that a(t, e) does not vanish for e # 0. 
This requirement has been used as a condition precluding turning points by Evgra- 
fov and Fedoryuk [6] in a context where it is viable. However, this condition is not 
sufficiently discerning for our purposes and must be regarded as a necessary, but 
by no means sufficient, condition. We are of course interested in the case where 
a(t, 0) does have zeros and we suppose that this function has only one zero at t = 0. 
We thus have assumed that a(t, 0) and a(O, e) both have an isolated zero at (0, 0). 
We also suppose that these zeros are of finite order. These restrictions already 
clearly delimit the scope of our results. For example the famous problem E2y" - 

a(t)y, where a(O) = 0, is immediately excluded. 
We now analyse a(t, e) in terms of its formal power series at t = e = 0. 
Notation. Given an infinitely differentiable function 4(t, e), let f denote the 

formal power series of 4 at t = e = 0. We also use circumflexed quantities to denote 
formal power series not necessarily associated with a given function or the product 
of such a formal power series and an infinitely differentiable function. 

Since a(t, 0) has a zero of finite order, say mo, at t = 0, it follows from the Weier- 
strass preparation theorem for formal power series [7] that a has the unique factori- 
zation 

/ mo-1 
(2-1) a = ktmo + E tmEk(m)pm (C 0 = 

m=O 

where pm((e) is identically zero or else a unit in the ring of formal power series, k(m) 
is a positive integer defined only if pm((e) is a unit, and Co is a unit. 
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We now apply the characteristic polygon of Iwano and Sibuya. We obtain the 
characteristic polygon e of (1-1) in the (k, m) plane by forming the convex hull of 
the vertical ray, So = { (0, m) Im _ mo}, the points (k(m), m) from (2-1) and the 
point (2n, -2). The boundary of this hull is the characteristic polygon, and evi- 
dently the points (0, mo) and (2n, -2) are vertices. Since a(0, e) has a zero of finite 
order, Po(e) % 0 and the point (k(O), 0) appears in the hull. As our first crucial 
technical hypothesis we assume: (k(O), 0) is a vertex of e. We denote the sides of e 
between (0, mo) and (k(O), 0) from left to right by Si, S2, * *, S,. Let Sj be de- 
scribed by the equation 

(2-2) j k + bjm = 'yj 

where cj and yj are positive rationals with least common denominator nj, and let 
the lower right-hand vertex of Sj be (kj, mj). It can then be seen that the change of 
variables 

t = eis 

(2-3),j j 1, 2, - - p , 
y(t, e) = w (s, E), 

transforms (1-1) into 

(2-4)j E2n-23ji7j d w = [Smi aj (S) + E/n,j (s, E1/ni)]w 

ds 

where aj is the polynomial 

(2-5) j aia(s) = To(0, 0) E pk(O)smmj 
(k(m) in) ESJ 

and 1j(s, u) is an infinitely differentiable function. The original equation (1-1) can 
be designated as (2-4)o if we let 5o = 0 and append 

(2-5)o ao(s) = S-moa(s, 0) 

Briefly summarized, the sides Sj determine the essential ways in which a leading 
part, smjaj(s), can be brought out of the transformed coefficient. 

We can now state the following 
Conditions Precluding a Turning Variety. 
1. (k(O), 0) is a vertex of e. 
2. ao(s) 0,- -to < s < to. 

3j. aj(s) 5 O,- oo < s < oo, j = 1, 2, ... , p. 
Condition 1 has the following significance. Since e is concave upwards, the 

vertex (2n, -2) must lie strictly above the line k + 6,m - 7 = 0 which contains 
S,. Hence 2n - 26p - y > 0. This implies that (2-4)p, and hence each problem 
(2-4) j, j = 1, 2, - - *, p, depends on e in a singular way. In other words we must re- 
quire that each of the related problems has the singular kind of dependence on the 
parameter which disposes toward an asymptotic theory. Condition 2 merely re- 
states that a(t, 0) has no zeros other than t = 0. Conditions 3j, j = 1, * * p - I 
assert that (2-4)j has no turning points other than s = 0. Condition 3p refers to 
(2-4), which has the special form 

>2n-2bp--7pd2W 2 = [ap + C1 'nP,3p]w 
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since mp = 0. Since 0 = 8o < t1 K< b,, the transformation t = s5EP describes 
(1-1) in the smallest or "innermost" asymptotic scale. Thus condition 3, asserts 
that this innermost problem has no turning points. 

The absence of turning varieties will insure the formal validity of our results in 
the precise sense of Theorem 1 below. In addition we require a more analytical 
condition of a familiar kind which will imply that -we can determine solutions of 
(1-1) which do not undergo a transition from violent growth to violent decay. In the 
absence of such a condition we would be forced to subdivide [- to, to] into contiguous 
closed subintervals. Since a(t, e) does not vanish and the underlying (t, e) domain 
is contractable, a continuous choice of arg a(t, e) is uniquely determined by its value 
at a single point. We refer to such a choice in the following. 

Nontransition Condition. There is a continuous determination of arg a(t, e) 
satisfying 

arga(t, E)J?r. 

We could use other inequivalent conditions instead: for example, Iarg a(t, e) I?< ir 
where a is the "leading part" of a used in Eq. (1-5). Also in some cases a shorter 
section of the e-power series of a could be used. 

3. Examples. 
3.1. We consider (1-6) assuming that +(t) has a zero of order 6 at t = 0. The 

vertices of the characteristic polygon are (0, 6), (1, 0) and (2, -2) and there is only 
one relevant change of scale, t = E1/6 S, determined by the line joining (0, 6) and 
(1, 0). This leads to the transformed problem 

(3-1) E'23d2w/ds2 + (as6 + 1 + El/63B(s E1/6))W = 0 

where a = q(6)(0)/6! > 0. This problem has no turning points. Accordingly the 
original problem, which has a turning point at t = 0, has no turning varieties. 
Clearly the nontransition condition is also fulfilled. 

3.2. The problem 

- 5y (it3 + Et + iE2)y 

determines two changes of scale, t = E1/2s, t = ES, and corresponding equations 

E5/2d2w/dS2 = (s[1 + is2] + iEl/2)w 

Ed2w/ds2 = (i + S + iE&3)w. 

Here ao = i, al(s) = 1 + is2, ca2(S) = i + s, and the problem has no turning varie- 
ties. However, the nontransition condition fails since the range of a is a curve in the 
complex plane crossing the negative real axis at a = - c-/ when t = -E2/3. This is 
not serious since we can obtain separate results on two contiguous domains of the 
form -to < t < -,E21, 0 < e < E1 and -E2/1 < t < to, 0 < E < El. 

(In considering the extension of this problem to complex values of t and E, it is 
clear that the complex algebraic curves determined by it2 + e = 0 and t + iE = 0 
are the turning varieties. However, extensions of the nontransition condition must 
account for geometric phenomena of great complexity.) 

3.3. For each of the problems E2y" + (t2 + E2)y = 0 and E2y' + t(t - E2)y = 0, 
we obtain a polygon with only one numbered side So, to which corresponds the lead- 
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ing part tm0oao(t) = t2. Thus t = 0 is a turning variety of each problem. In these 
examples the varieties t + is = 0, t -i = 0, t = 0, and t - el = 0, which account 
for the vanishing of the coefficient functions, are too close in the relevant scales to 
justify distinguishing among them. It is also natural to describe t = 0 as a double 
turning variety for each problem. 

3.4. The problem e2ly - (t3i(t) + e)y, Ati(0) = 1 has a turning variety t = - E113. 

Thus our results taken in total do not apply. However, it is not hard to extract 
partial results which elude the classical methods. For example our formulas give uni- 
form asymptotic solutions on [0, to] (more generally on [-E1l3 + CE4/9-6, to] where 
a > 0, although we shall not prove these results). This is significant because this 
one-sided failure of our hypotheses (a turning variety intersecting only the negative 
real axis) produces a two-sided failure of the classical asymptotic expansions. Finally 
it appears that a single uniform theory of solutions on [-to, to] can be obtained by 
combining our methods with the comparison methods of R. E. Langer. 

4. The Connection Problem for the Classical Expansions. Our hypotheses bring 
problem (2-4) j within the scope of the standard theory if s is restricted to a finite 
closed interval not containing s = 0 for j = 0, - - -, p - 1 or to any finite closed in- 
terval if j = p. It is then the case that on each such interval, Eq. (2-4) j has a funda- 
mental pair of solutions wj( )(s, e), i = 1, 2, which possess simple asymptotic repre- 
sentations ,ji(s, e). However, these results do not reveal to what extent the formal 
expressions w (te-61, e) will describe the limiting behavior of the solutions, 
wj(i) (te-6 j, e), of (1-1) obtained by reversing the transformation (2-3) j. Moreover the 
solution pairs wj(i)(te-61, e) are, in general, different solution pairs of (1-1). Among 
these pairs must persist linear relations depending on e. It is the case that the formal 
expressions w. (? are of limited usefulness unless we have an asymptotic description 
of these relations. 

We will determine the full range of validity of the classical expansions and the 
linear relations or connection formulas relating them by the simple procedure of 
breaking down our uniform asymptotic solution into classical forms on suitable 
subdomains. 

5. Examples (Continued). 
5.1. Formal methods given in [1] lead to formal solutions of (1-6) having the 

form 

(5-1) v"4(t) exp [i - f cp"2(s)ds 4 if A /-/(s)ds]{1 ? + 

where the brackets enclose a formal power series in e with coefficients which are 
infinitely differentiable functions of t. Evidently these formulas are meaningless at 
t = 0, but they are known to represent solutions of (1-6) on any closed interval not 
containing t = 0. 

Similarly the transformed problem (3-1) has formal solutions 

(5-2) (as6 + 1)1/4 exp 1S| (o6 1)112d ? 6 E 2 do- + - 

which represent solutions of (3-1) on any closed s-interval. It is not hard to see that 
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the formulas (5-2) cannot be meaningful if we reverse the transformation t = I'Os 
since, for example, if 4 = t6 near t = 0, then "(s, e) 0 O, and (5-2) does not even 
depend on the function 4. 

We are thus concerned with three solution pairs: a pair represented by (5-1) on 
some negative t interval (pick r = -to in (5-1)), a pair represented by (5-2) on a 
finite s interval, and a pair represented by (5-1) on some positive t-interval (r = to). 
But for small e the three corresponding t-domains do not overlap. For this reason 
the results we have described are not sufficient to determine asymptotically the 
linear relations connecting the three solution pairs. A simpler problem of a similar 
nature is the scattering problem: to find the relations expressing the solution pair 
of (1-6) which has complex exponential form for large positive t in terms of the pair 
which has the same form for large negative t. 

5.2 An algebraic connection problem. We consider the problem of finding as- 
ymptotic formulas for the roots of X2 + 4(t) + e = 0 where X, t, e are as in problem 
(1-6). Let +5(t) = tli/2(t) where A/ > 0. Then the global continuous roots of the 
previous equation have asymptotic representations 

Xi4 i_ it3~ i4i (i4E/2) t-'411 + * **0 < t1 < t < to 
4- it1(eS + 1)1/2 + t = e1 S, I 

S So 

T it4, T (ie/2)t-3+-l + .. -to < t< -ti < 0 

It is perhaps appropriate to regard the choice of sign here as a little connection 
problem since the series can be computed by formal procedures which provide no 
clue as to the correct choice. Also the series have formal irregularities resembling 
those in series (5-1) and (5-2). Finally the roots undergo a Stokes' phenomenon or 
change in the analytic form of their asymptotic representations. As we will see, 
these irregularities will partly account for more recondite irregularities in the 
asymptotic solutions of (1-6). 

6. General Formal and Asymptotic Series. In this section our object is to give 
convenient definitions of formal and asymptotic series depending on a single small 
parameter, e. We first describe a bare context in which we can place the notion of 
uniform asymptotic expansion. Let X be a quite general set and let 2 be a subset of 
X X (0, e0] on which the function 1/e is unbounded. Let B'(Q) denote the ring of 
complex valued bounded functions on U. Then eB'(9) is a proper ideal in B'(Q) and 
can be used in the following way to induce a notion of formal convergence in the 
ring of complex valued functions on U. 

Definition 1.' A sequence {fk }, k = 1, 2, * , of complex-valued functions on Q 
is formally convergent to zero if for any positive integer N there is a k(N) such that 
fk E 'NBY(Q) for all k > k(N). 

We note that if fk converges formally to zero then all but a finite number of the 
fk belong to B'(Q). In the next definition we put a restriction on these possibly un- 
bounded terms. 

Definition 2'. A series of complex-valued functions on Q, EZ=o fk, is formally 
convergent if for some N and all Jk, fk E e-NYB(U), and if the sequence fk converges 
formally to zero. 

We define the sum and product of formally convergent series by Ek=o fk + 

k=O gk k=o (fk + gk) and (Z-o fk) (k"=o gk) = ?=O( =ofjgk-j). Since 
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these operations lead to series which are again formally convergent, the collection 
of formally convergent series is a ring B' (Q). However, this ring is too large to be of 
much use (e.g. the series f + 0 + 0 + ... and 0 + f + 0 + - are different ele- 
ments of 3' (Q)). It is not hard to verify that the subcollection (Bo'(Q) of series for- 
mally convergent to zero, that is, series for which the sequence of partial sums con- 
verges formally to zero, forms an ideal in B' (Q). We can thus form the quotient 
ring B'/(Bo' or equivalently introduce the following terminology. 

Definition 3'. The symbol or the term "formal equality" denotes equality in 
V3'(Q) modulo (Bo' (Q) . 

The preceding definitions are partly analytic in nature and do not have the 
purely algebraic character, for example, of the theory of formal power series. They 
will be applied to such series as the right-hand side of (1-3), the terms of which are 
not distinguished by any simple algebraic properties, and which itself has no signifi- 
cant uniqueness properties. 

We next give a related definition of uniform (more precisely, uniform in x) 
asymptotic expansion. 

Definition 4'. The series Ek=L fk is a uniform asymptotic expansion of f if for 
some N, fk E e-NB'(Q) and the sequence f - Zk=j fj converges formally to zero. 
We indicate this relationship by writing 

00 

f -E fk . 
k=1 

Remarks. Evidently a uniform asymptotic expansion is a formally convergent 
series. If we identify f with the trivial formal series f + 0 + then f ' ? fk is 
equivalent to f fk. Also if f Zfk and ? fk gk then f -- gk so that 
asymptotic expansions are well defined modulo (B0'. They are also unique modulo 
(Bo', that is, as elements of 63'/6Bo', but since elements of (Bo' abound, asymptotic 
expansions are not unique in any more refined sense. 

The above notion of asymptotic expansion is determined (in Definition 1') by 
the nested sequence of ideals, kB' (a), k = 1, 2, - .. It is possible to define more 
general kinds of asymptotic character by introducing more general sequences of 
ideals but the preceding notions seem to include very many cases of interest. Indeed 
our most delicate results involve other sequences of ideals but since these depend on 
the individual features of (1-1) it is most natural to let these ideals appear more 
explicitly in our results. 

Using the formal convergence described above we can consider formal solutions 
in (6'(Q) of an equation 7r(x, e, y) 0 if ir is a polynomial in y with coefficients in 
B'(Q) or (6'(Q). We now refine and elaborate the above scheme in order to be able 
to consider analogous solutions of differential and partial differential equations. We 
restrict our previous definitions to the case where X is Euclidean q-space Rq with 
coordinates xi, , xq. Thus Q is a subset of Rq X (0, eo]. Let K(Q) be the ring of 
complex valued functions f on Q such that the restriction of f to each e-cross section 
of Q is infinitely differentiable. (We recall that a function on a subset Y of Rq is de- 
fined to be differentiable if it is the restriction to Y of a function differentiable on 
some open set containing Y.) We want to specify a subring of K(Q) in which the 
function f(x, e) = e generates a proper ideal and in which this ideal induces a formal 
convergence which is preserved under x-differentiation. The ring K(Q) is itself much 
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too large (eK(7) = K(Q)) and likewise the ring K(m) n B'(Q) contains sequences 
such as Ek sin (ek/Elxi), formal convergence of which is destroyed by differentiation. 
At the other extreme the ring of functions with bounded x-derivatives of all orders 
could be used, but this is too special for our purposes since we are forced to consider 
functions which respond to differentiation in an unbounded manner (solutions of 
(1-1) for example). A suitable intermediate choice is the following. Given a fixed 
nonnegative integer M let B(Q, M) be the subring of K(m) n B' consisting of func- 
tions such that derivatives of all orders with respect to the differentiations EMa/axj, 

j = 1, * * *, q belong to B'(Q). We then proceed as above. We shall retain the same 
terminology: "formal convergence," "uniform asymptotic expansion" etc., with the 
understanding that the preceding preliminary uses are being superseded. 

Definition 1. A sequence fk, k = 1, 2, *... of elements of K(Q) is formally con- 
vergent to zero if for any positive integer N there is a k(N) such that f ENB( , M) 
for all k > k(N). 

Definition 2. A series of elements of K(Q), 57= fk, is formally convergent if for 
some N and all k, fk e E-NB (Q, M) and if the sequence fk converges formally to zero. 

Again the collection of formally convergent series is a ring (6(Q, M), actually a 
differential ring with derivations a/aXk, k = 1, 2, - . , q. Similarly it is easy to see 
that the collection (Bo(Q, M) of series formally convergent to zero is a differential 
ideal, that is, (Bo is an ideal closed under differentiation. This means that the a/axX 
act naturally on the quotient ring (B/(Bo. 

Definition 3. The symbol or the term "formal equality" denotes equality in 
(B modulo (Bo. 

We can now consider formal solutions in (B of partial differential equations 
ir(y) 0 where ir is a polynomial in y and its x-partial derivatives with coefficients 
in B or 63. Such a problem corresponds in a well-defined way to the corresponding 
problem 7r(y) = 0 in 3B/(Bo with coefficients in the same quotient ring, or less ele- 
gantly expressed: we are sure that if yiis a formal solution of 7r(y) 0 and Y2 Yl 
then Y2 is also a formal solution. 

Finally we have the corresponding notion of uniform asymptotic expansion. 
Definition 4. The series E ?=1 fk is a uniform asymptotic expansion of an element 

f of K(Q) if for some N, fk E -NB(Q, M) and the sequence f - >j=i fj converges 
formally to zero. We indicate this relationship by writing 

00 

f ' E fk. 
k=1 

It happens that a uniform asymptotic expansion in this sense can be termwise 
differentiated with respect to x. For if f --??'0 o fk, then for some N the sequence 
f - Yj:=o fk, k = 1, 2, * ,is a sequence of elements of E-NB convergent to zero. 
This implies that the sequence (af/lax) - 5k,=o afjl/ax, k = 1, 2, * is a sequence 
of elements of -N-mIB convergent to zero, which means that (af/axi) 

=k-1 afk/X i. 

Similar properties are enjoyed by the formal e-power series expansion of an 
infinitely differentiable function of (x, e) of which our kind of expansion is a generali- 
zation. It is known that any formal power series is the asymptotic expansion of 
some infinitely differentiable function. We require a similar result for our kind of 
formal series. For purposes of exposition we suppose that x is one-dimensional al- 
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though the conclusion anid proof are easily modified to include the case where 
x E Rq. 

LEMMA. Any formally convergent series is the uniform asymptotic expansion of 
some function.. 

Proof. If rk., fk(x, E) is formally convergent then there exist integers M, N 
such that 

O g 
(XI e) E 6 e-N2-mM+iP(k)B (Q, M) 

where 41(k) is a nondecreasing function of k approaching + oo as k -*> ?o. Otherwise 
expressed, there exist constants bnk such that 

I (d/dx)mfkl < bmkE V-MM+4(k) 

where we can suppose that bin1k > 1. Let 0(u) be an infinitely differentiable function 
identically 1 near zero, identically 0 for u ? 1 and satisfying 0 ? 0 ? 1 for all u. 
For any 3 > 0 let Fk be the -function 

/ k \ 

Fk = 0 kl E bmk fk 
m=O 

The sum f = -1 Fk is finite for each e since Fk is zero unless E6k! =o bmk < 1. 
This implies that for k ? m 

[')F < 

This ensures that for large k 

(d (f 
k )-1# *(Bg 

which implies f ' Ek=1 Fk. And since 0-=1 fkA 17=1 Fk we conclude that 

01 

f E Jk.- 
k=l 

7. Examples (Continued). 
7.1. If the functions ak(t) are each infinitely differentiable and the 7w1(t, u) are 

polynomials in u with infinitely differentiable coefficients for Itf ? to, then the series 
,k=-N ak(t) Ek0 ,k=-N ak(t) CIh, where h > 0 and ,k_2 1rk(t, log e) flog log k are rather 
conventional examples of formally convergent series. Here Q = [-to, to] X (0, eo] 
and the underlying ring can be taken to be 63(B, 0). However there seems to be no 
advantage in strengthening our definitions to exclude bizarre dependence on e. For 
example if bk(6) is any sequence of individually bounded unmeasurable functions 

50k=-N a Ck(t)b*(E)e is also formally convergent in the same sense. 
7.2. If f(e) is infinitely differentiable at E = 0, then its formal Taylor series 

Ek?=O Ck0E1k is an asymptotic expansion in our sense. Moreover, on the domain 
= g(t, E):It - e1 > E1-', 3 > 01, we have 

f~~~Zc(t t) E C(f)1 
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where the underlying ring can be taken to be 63(Q2, 1). However on the domain 
&2 = { (t, e): i -r1 > e log 1/e } this series has no asymptotic character in our sense. 
Roughly speaking, on Q the series behaves at worst like an asymptotic power series 
in el, while on Q' its behavior degenerates to that of an asymptotic power series 
in (log e-1)-l. A weaker kind of convergence induced by an ideal generated by 
(log e-1)-l would however be relevant in the latter case. 

8. -An Ad Hoc Preparation Lemma. Thus far our analysis of (1-1) has depended 
chiefly on the formal factorization (2-1) of a and the derived characteristic polygon. 
We next obtain a related factorization of the function a itself. We recall that the 
leading parts of the transformed problems (2-4)j are determined by the exponent 
pairs (k, m) which lie on the characteristic polygon. In the following definition we 
identify the simplest polynomial which determines essentially the same leading 
parts. 

Definition 8.1. Let P(t, E) be the polynomial in t and E derived from the formal 
factorization (2-1) and from the characteristic polygon according to 

p tmO + E Em (0) 
(k,m) eS1US2...USp 

We now consider the factorization a = P(P-1a). Following the point of view of 
Section 6 we will characterize the quotient U = P-la by its membership in a 
differential ring. 

Definition 8.2. Let 0(to, El) be the domain tj ? to, 0 < E _ el < Eo. Let z(t, E) 

= (t2 + E28P)1/2. Let A = A (to, El) be the subset of K(Q(to, El)) consisting of functions 
f such that 

( - dt)kf E B'(Q(to, El)) ,k = 0,1 ... 

Remarks. The collection A is a differential ring with derivation zd/dt. Since we 
have assumed 2n - 25p - -yp > 0 it follows that Sp < n. This readily implies that A 
is a differential subring of B(Q(to, El), n) which we shall henceforth suppose to be 
the ring underlying our use of -and . 

We can now state the following 
PREPARATION LEMMA. For El sufficiently small the function a can be represented in. 

the form 

(8-1) a=PU 

where U is a unit in A (to, El) and P is defined by (8-1). 
Proof. We first observe that given any t1 > 0 there is an El sufficiently small such 

that for t1 < ItI < to and 0 < e _ El both P and a are units in the ring of infinitely 
differentiable functions, so that on this domain the factorization is trivial. It thus. 
suffices to prove the lemma for It! < t1, 0 < e _ El where both t1 and el are suf-- 
ficiently small. But for t1 and el sufficiently small the Malgrange preparation theo-- 
rem [8] implies that corresponding to the formal factorization (2-1) there is a factori- 
zation of a of the form a = iru where r is a monic polynomial in t of degree mo with 
coefficients which are infinitely differentiable functions of E, u is a unit in the ring of- 
infinitely differentiable functions of t and E, and 7r = Po, fi = Uio. We consider the 
equation Po(r, e) = 0 as an algebraic equation for r with coefficients in the ring of 
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formal e-power series. This equation has mo solutions in the ring of formal power 
series in some fractional power of e. We choose mo infinitely differentiable functions 
of this fractional power of e having the formal roots as asymptotic power series. Let 
P1 be the monic polynomial in t having these functions as roots. Then the coefficients 
of P1 are easily seen to be infinitely differentiable functions of e. Also P1 satisfies 
P1 = = Po. Hence each coefficient of the polynomial in t, r - P1, has a zero of 
infinite order at e = 0. Thus for any integer M the Malgrange factorization can be 
written in the form 

(S-2) a = (Pi + eMQ)u 

where Q = e-m(r- P1) is again a polynomial in t with infinitely differentiable 
coefficients. 

We now examine the linear factors of PO, P1 and P. The portion of the character- 
istic polygon of (1-1) between (0, mo) and (kp, 0) is the Newton polygon of PO. It 
follows (Semple and Kneebone [9] or Bliss [10]) that the roots of Po have the follow- 
ing form. Corresponding to each zero v of one of the leading parts ak(s), there is a 
root of PO having the form 

ro = Ejkv + *vv 

By construction this formal series is the asymptotic series for a root ri of P1. Since 
the polynomial P agrees with P1 in terms which lie on the Newton polygon, there 
is a root r of P possessing a convergent series with the same leading term. Under 
the hypothesis that there are no turning varieties none of the possible values for t 

are real. It follows that for El sufficiently small, It - -r1 > CE8k and It - Tr > CE8k, 
where c > 0. In particular, the linear factors of P1 and P are never zero on Q(to, E1). 
It then can easily be seen that the functions 

t - Tj t - -r t z z e- and 
1 tTi tT-r z t -r t _rlandt-r 

are bounded, and therefore generate an algebra of bounded functions. Since the 
application of zd/dt to each generator again yields an element of this algebra, we 
conclude that this algebra is a subset of A. In particular (t - -r)-(t - -ri) is a unit 
in A. 

We now choose M = mon + 1 in Eq. (8-2) obtaining 

a = P{'p + e pQu. 

Since P1/P is a product of factors of the form (t - r)-(t - ri) it is a unit in A. 
Similarly p-1Emon is an element of A. For ei sufficiently small P1/P + 6(6mon/P)Q has 
a bounded inverse which in turn readily implies that it is also a unit in A. Finally 
U = P-1a = {P-1P1 + emon+1P-1Q } u is also a unit in A which concludes the proof. 

We remark that P is uniquely determined by (1-1) but the functions wr and P1 
appearing in the proof of the preparation lemma are not. 

9. Formal Solutions. The following theorem establishes that series (1-3) is 
formally convergent and that it behaves roughly like a power series in the quantity 
I = cnz-]P-1/2 

THEOREM 1. If Eq. (1-1) has no turning varieties, then for E1 sufficiently small the 
sequence Rk defined by (1-2) satisfies 
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'-)Rk E Pl 2IkA where I = enzP2 

Moreover the series 

00 

r E eRk 
k=O 

is a formal solution of Cnr' + r2- a 0. 
Proof. 1. We first show that the sets PI /2IkA are differential ideals in A, that 

is, ideals in A closed under the action of zd/dt. Evidently pl/2 is bounded. Also 
zP-'dP/dt is a sum of elements of the form z(t -r)-1, where -r is a root of P. These 
have been established as elements of A in the proof of the preparation lemma. Hence 
zP-1dP/dt E A. The identity 

(ddN?)p1/2 = 1 (d IVpl 2(p-ldP) 

(9-2)/~ 2 dt\ d1/\dt/ 

and induction shows that (zd/dt)NPl/2 is bounded for all N, that is, p1/2 E A. 
We next verify that I is bounded. In the proof of the preparation lemma it was 

established that for small ei the linear factors of P corresponding to the kth side of 
the characteristic polygon satisfy It - rj > cE8k. Hence, since Iz-11 _< e-8P 

I II < C n-(2 Ak-3p) /2 

where the indicated sum is over all linear factors of P. But the sum, ZEk, is just the 
order of the zero of a(O, e) at e = 0 which is kp or 7yp (see Eq. (2-2)). Hence 

II I < CEn-3p-yp/2 

Since the inequality 2n - 2ap - -yp > 0 is a consequence of our hypotheses preclud- 
ing turning varieties, we conclude that I is bounded, and even more, that the powers 
Ik form a sequence formally convergent to zero. Now, carrying over the above argu- 
ment for P, since zl-ldl/dt = -(z/2)P-'dP/dt - t/z belongs to A, identities similar 
to (9-2) show that I E A. 

We now apply zd/dt to P' /2IkA obtaining 

z d 
l/2 IkA C Q d P1/2 IkA + p1/2Z dt Ik)A + P1/2IkQ dt A) 

C p2 (Z-P dd t )IkA + P1/2ikQI1_ dt)A + pl /2 IkA 

C p1 PIIkA 

Thus PI /2IkA is a differential ideal in A. 
2. We now prove the inclusions (9-1) by induction. By the preparation lemma 

o= ? al/ = 
2 

P"2u12 E p1/2 

since the square root of the unit U is easily seen to belong to A. Thus (9.1) is true 
for k = 0. Suppose it is true for k <? i. Then by (1-2)k 
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en(i+l-jl =_ b( d 1>i i E kn 36nR 2Roz dt 2Ro k+j=i+l;k+>O0 

G I zd )pl,2IiA + p-1"2 E pl/Yjjpl12IkA 
dt j+k= i+1 

E Pl/21i+lA. 

3. It follows from estimates of I made above that 

I G En-6X-7p/2AA 

Hence (9-1) implies that the series Ek=o EnkRk is formallv convergent. Finally, 
substitution into Endr/dt + r2 - a leads to a series which is formally equivalent to 
zero. 

10. Formal Solutions are Asymptotic Solutions. We now show that the Riccati 
equation has solutions which are represented asymptotically by the above formal 
solutions. 

THEOREM 2. If r2ny'1 = ay has no turning varieties and I arg a(t, e) j ? ir then for El 

sufficiently small and Itl <? to, 0 < E _ Ei, solutions exist s-ich that 

00 

k=O 

where 

o2 - a = Rk+f = --Ro-1{Rkf + , RiR}j. Ro Rk+1 ~ 2 Ri+ F-k+ 1; i, j> 0 

Proof. As a preliminary step we select a function S such that S -- Zk=2 EnkRk. 

Imitating the construction in the Lemma of Section 6, for any 6 > 0 it easily follows 
that we can construct an S also satisfying 

S c (,EU-6/Pl/22)A . 

Let R- = Ro + OR 1 + S. Then R is an element of B((Q, n) (actually of A(2)) such 
that R -- Ek=iO EnkRk. We will establish the existence of suitable solutions of the 
Riccati equation by regarding R as a very excellent initial guess for Newtonian 
successive approximations. 

We transform the initial value problem 

Enr' + r2 - a = 0, r(-to) = R(-to) 

by the change of variable r = R + Enp into the equivalent integral equation 

ft 
p(t) - exp [-2eft Rdj {Icl + p2 ds = 0 

where a = G-(a- - enR') is a function asymptotic to zero. We consider the 
left side of the integral equation to be a function, F(p), on the Banach space of con- 
tinuous functions on [-to, to], vanishing at -to, endowed with the maximum norm. 
To establish the theorem it suffices to show that F(p) = 0 has a solution satisfying 
p /_-/ 0. 

We use a basic result about Newtonian approximations due to Kantorovich 
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[11, p. 708]. Kantorovich's theorem requires estimates for F' and F", the first 
and second Frechet derivatives of F, and implies that if 1J {F'(0) }-'F(O) jj < n, 
jj{F'(0)}-1F"(0)jj < L and r7L < 1/2, then F(p) = 0 has a solution satisfying 

IIpII < (1 - (1 - 27)112)/L. In our case F'(0) is the identity mapping and F"(r) is 
independent of r. Hence we require estimates for jIF(0) Ij and jIF" I1. 

In order to establish these estimates we must use the nontransition condition 
which implies that a(t, E) has a root RIo = a']2 satisfying Re a'/2 > 0. Then since for 
any positive 6 

n ~~~~2n-a 
R = a12- e dt loga+ b2nb 4 dt2Z 

where b is bounded, we conclude that the kernel 

h(t, s) = exp - 2fRdo- 

can be estimated by 

jh(t, s)I < | a(t, E) 1/2 {Cln-yp-3 ft do- a (s, E) ex >1P + E 

< 
, 

Ce7/2 ep{fn-yp /2-3P-6 |0 dr } < C JE'2 exp ~C2E I/~p + 2} 

Choosing 6 to be smaller than the positive quantity n -yP/2 - bp we obtain 

I h(t, s) I < C36P/2 . 

Since F(0) = St to h(t, s)a(s)ds we conclude that 

JF(0)J < C4'6_p'2JJaj= 7(E) 

Also F"(r) is the bilinear mapping given by F"(r) (u, v) = 2 ft to h(t, s)u(s)v(s)ds. 
Hence 

JIF"(r)11 < CE -Jp/2 L() 
Thus the quantity f7(E)L(E) decisive for Kantorovich's result is C66-YPjjajj. Since 
a (x- 0, Ilall ? ENB' for each N. This implies that for small e, 77(E)L(E) < 1/2. Hence 
there exists a solution p of F = 0 such that 

IIpII < (1 - (1 - (e)L (e))1I2)/L (e) 

which implies that p E eNB' for each N. This in itself does not insure that p 0. 
However, this relation follows from the fact that the functional equation F(p) 0 
implies that any solution in B'(Q) which is continuous in t for each e actually belongs 
to B(Q, n). Finally we observe that for the other choice of square root, Ro = -a' /2, 
the proof carries over if we replace the boundary condition p(- to) = 0 by p(to) = 0. 

COROLLARY. Under the hypotheses of Theorem 2 there exist solutions y+ such that 
the functions 

exp T { f a 2(s, e)ds}y?(t, e) 

possess uniform asymptotic expansions. 
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Proof. Theorem 2 implies that y? exist such that 

n 
t 

1/2 1 ?? 
n 

rt 

log y? - E a +E k (, 
0 k=2 ' 

Since Enk J Rkds ( Een-6P-('1 2)YB, the expansion for the function on the left leads 
easily to an asymptotic expansion for its exponential. Termwise multiplication of 
this expansion by a-1/4(t, e) gives the required expansion. 

11. Examples (Continued). Theorem 2 ensures that (1-6) has solutions y? 
satisfying 

e log yf =- ? if 4 + )"12ds - -log (+ E) 

( E iF {i14/E(2 + E)-3/2 - 5 (O2 + e)J/2u ?s+ 

These formulas cannot be further simplified without sacrificing the uniformity of 
the expansion. 

12. Solution of the Connection Problem. Since we possess uniform asymptotic 
solutions on [-to, to] we already have, in principle, connection formulas. We need 
only break down our formulas into the simpler classical forms and read off the 
connection constants. In carrying out this reduction we will obtain precise results 
about the range of validity of the classical expansions. However, our main interest 
in Theorem 3 below is that it contains an effective procedure for computing the 
connection constants. 

To study the relation of our uniform asymptotic solutions to the classical 
asymptotic solutions we must introduce a covering of [-to, to] by 2p - 1 contigu- 
ous closed intervals I-p+1, I-+2, ... , Io, I1 ... Ip-i. We define these by Ik = 

(sgn k)J,-Ikl for k 0 0 and Io = Jp, U -Jp, where 

Jl {t SlE1 < t ? to} 

Jk = {t SkE ? t <SklE 4kl} k = 2,** *,p- , 

and 8k-1 < 8k' < 8k where Sk > 0, and 

Jp = {tlO < t < sp-1E} 

We remark that the upper end point of Jk, k > 1, is large in the asymptotic scale 
s = tc-8k, but small in the adjacent scale s = t6-ck-1. 

We will use the technical device of the Neutrix or additive class of negligible 
functions, a notion which has been developed by J. G. van der Corput [12]. For the 
sake of this device it will be convenient to suppose that the quantities Sk appearing 
in the above partition of [0, to] are each variables ranging over some small interval J 
containing 1. We can now attack the problem of computing asymptotic expansions 
for integrals of the form f' f (s, E)ds in the following way. If f(t, e) possesses simple 
asymptotic expansions on each Jk, then for t ? Jk, we can obtain expansions for the 
integral by decomposing it into So' = fJ1 + Jp-1 + f Jk-1 + + jSf stk and 
inserting asymptotic expansions for the integrand. However, it is self-evident that 
while the intermediate computations in this procedure depend heavily on the 
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variable end points of the intervals Ji, the resulting asymptotic expansion does not. 
It is therefore reasonable to hope that since all functions of Sk which occur in the 
intermediate steps must cancel in the end, these functions can be systematically 
eliminated in early stages of the computation. We will show that such reasoning is 
possible. We remark that this technique simplifies the computations in a funda- 
mental way and it is hardly possible to analyze even simple examples without it. 
However, the relation 

e '1- E/2 + log se'/2 - log s 

shows that some caution is required. Here, although the function on the left is 
independent of s, we cannot individually neglect the functions of s which appear in 
the trivial asymptotic expansion on the right. It is thus essential to identify a class 
of terms which can be individually neglected. The following special class will be 
sufficient for our purposes. 

Definition. We consider formal series in the variables t, si, 82, * *Sp, E, on the 
domain [-to, to] X Jp-1 X (0, El], where J is a small interval containing 1. A series 
is said to be negligible if it is a finite sum of the following: formal Laurent series in 
SjEh or s8 -]h h > 0 with no constant term a finite number of negative exponents, 
and coefficients which are formal power series in a fractional power of e; multiples 
of log Sk with similar coefficients. If a function f has a uniform asymptotic series of 
the form 

f(t, Sl, .., Sp e) ') F(t, E) + N(si, *. I sp-l, E) 

where F is a formally convergent series on [-to, to] X (0, q1] and N is negligible, we 
say that F is a neutralized uniform asymptotic expansion of f. 

This definition is useful because the following lemma justifies neglecting negli- 
gible functions in our computations. 

LEMMA. If 0 is a neutralized uniform asymptotic expansion of a function f(t, E) of 
t and E alone, then f - 0. 

Proof. By hypothesis f(t, E) R (s , * 8, e) where N is negligible. It follows 
that f has a uniform asymptotic expansion of the form 

* 00 

f , EEh 'P k(Sl, 
.. 

* *Sp) 
k=O 

where hk is a strictly increasing sequence of real numbers tending to oo and 'pk is a 
finite linear combination of positive powers, negative powers, and logarithms of 
sl ... , sp-1. By the definition of asymptotic expansion there is an N1 such that 

N1 

f E > Ehk Pk < lIIE2 
k=O 

which implies that 

eihl f (t, E) = ('P(81, . S. .p s-,) + Eh2hll 

where 0j is bounded. This implies that 

|n(Si, * ,sp 1) I (r(sl,)*** sp_1) 1 < e M 

for Sk, Sk' E J, which, together with the special form of s?l, implies i = 0. Similarly 
'P2 = 03 = * = O. Thus f t-._- E Ehk'Pk 0?- 
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A complete solution of the connection problem of Section 4 can now be expressed 
in the following result. 

THEOREM 3. On each domain t EC Ik, 0 < E < 1, k = -p+, , p - 1, the 
solution pair y+ of Theorem 2 has an asymptotic representation of the form 

Y?f(t, e6) -W'k-'(S IE)C'k'(E) 

where Wki is a classical formal solution pair of (2-4)k. The Ck?(E) are determined by 
neutralized format expansions of the formal solutions (1-4) and satisfy 

E log Ck (e) = Sk (E) + Ok (E) log e 

where fk? and 0k are formal power series in a fractioal power of e. 

We omit the proof of Theorem 3 since it is well represented by our concluding 
analysis of example (1-6) below. 

13. Examples (Concluded). We complete our analysis of 

(1-6) E2y" ? (' + E)y = 0 

by computing connection formulas relating the classical asymptotic forms (see 
Section 5) valid for negative t to the similar forms valid for positive t. We accomplish 
this by reducing the uniform formulas given by (11-1) to two different classical 
forms, depending on whether t is positive or negative. Let YLF and YR? denote the 
solution pairs obtained from (11-2) by choosing r =-1 and r = + 1, respectively, 
as the limit of integration in the exponential. Then these solutions are related by 

(13-1) YR? = YLWC? 

where 

e logCJ ?if_ ('p+ ?) 
1 dt 

(FiE2 L JI{8"(o + E)-32 _ 5 /2( + E)-5/2dt+ 

Since we will verify that YL? and YRf are represented by classical asymptotic 
formulas for negative and positive t respectively, the relations (13-1) and (13-2) 
constitute, in principle, a complete solution of the stated connection problem. The 
main object of our remaining analysis is to obtain more explicit asymptotic formulas 
for the connection constants C?(e) by the method described in Section 12. We now 
suppose, for purposes of illustration, that ' has the specific form described in Section 
1. We assume that 

(i) +(t)=tV(t), where 'l'> 0, 

(13-3) (ii) +2(t) a a+ E Zktk 
k=1 

(iii) 'p+ 1, forlt| >: 1. 

We recall Section 3, Example 1, in which we found that the relevant asymptotic 
scales for this problem are t = 0(1) and t = O(E1/6). In this case the subdivision of 
[-1, 1] into contiguous closed subintervals given in Section 12 has the form 
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(13-4) [;[-1 1] = [-1, -51E] U [-S'Ec, siE] U [Sir:, 1] 
where 0 < 6 < 1/6 and, say, s1 ? [1/2, 3/2]. The significance of this subdivision is 
that on each subinterval the function 4 + e possesses a single, simple leading part in 
the following manner. On each of the outer intervals 4 + e = t%t2[1 + ht-6112] = 

t%t2[1 + 0(cl-68)] while on the inner interval (letting t = SJ1/6) 

+ + e- E(as + 1)[1 + (as6 + 1)- [k65 6 
k=l 

E (as + 1)[1 + 0(,E)]. 

It follows that on these subintervals we can simplify the fractional powers of 
4 + e in (11-1) by inserting the asymptotic expansions 

(13-5) (4) + )k/ (t3', sgn t)k[l + (k/2)Et 6A2 + ] 

and 

.. k/2 c-k/2 aS6 + W2 I 
k 1/6 OJS 

+ (13-6) (42 + e) ^' /2(o6 + l) [lI + l 6 /3i5 + 

If we use (13-5) to simplify YLI and YR: we find that 

(13-7)L YLr 
t 

(-t3/2Vl/2 exp {f+f s3sds + }fortE (-Xoo -sc ], 

and 

(13-7) R I R { 0 (13-7) ~ Y ? t-~- exp {? + s3/ds + *.}for t C [siE, o) 

(It can be seen in these formulas that we have willfully used "?" to label the solu- 

tions according to the formal properties of their classical asymptotic formulas.) Thus 

the constants C?(E) are actually the constants relating the classical asymptotic 

forms. The asymptotic behavior of Cl(E) is given by the following result. 

Asymptotic Connection Formulas. The asymptotic solutions of (1-6) given by 

(13-7) L for negative t, and by (13-7) R for positive t, are related by YR = YL TC? 

where 

logCi = i{5' J Is13 ds + p-1/3 f [(as6 + 1)1/2 a'121S13]ds 

+ log /02 a-3/2 1 2a-) 

+ ( 1 [s A-1- a-1/2 S-3 + 1 a-3/2 3ls-2 

(13-8) + (2 2a/3/2 - 
3 

/l2a-5/25-1] sgn sds - a -1/2 

+ h h(s) - 02a- '- 3o dza 5's-1 ds 
- 0 

(+l1~/ - 3 2/2)3521]d 2 

+ f-l h (s)ds + [h (s) + _-3 /2 _3_ - 25 /2) ]d)} 

+ O(E1/3) 

and 
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h (s) = (1/2) (6,3f + 1 )1/2S2s8 - (1/8) (aS6 + 1< 3/2:2S14 

-( :-1/2_ 
1 

:2-3 /2)l1 - 
2- - #1 a2/2j 

Proof. We introduce the subdivision (13-4) into the integration in (13-2), ob- 
taining 

e log C (E) --i f (i +) 1/2 dt i i? (qp + E) 1 dt 
-1 -sle8 

?4i 1 (' + E)1/2dt 

=Fi 2 J {1 + )3/2 - 5 012( + E)-5/2 

Changing the dummy variable from t to s = tE-1/3 in integrals over the inner interval 
and inserting the asymptotic expansions (13-4) and (13-5) for (+ E)k12, we obtain 

E log C?(E) = 2ii] {t3p + 2 Etl/7}dt 

2 /3i sle(-/6 6 +11/2 +1 1/6 13i87 

(13-9) | -SlE/ {(SaS + 1) +22+(l 6 + 1)1/2 

1 1/3 23286 1/3 1 2 82 14 

2 (aeS6 + 1)1/2 E 8 (S6 + 1)3/2f' 

?if | {tt3?p + 2 d-3r'A } dt + 

We now introduce a class of negligible formal series according to the definition 
of Sectioii 12 in order to compute neutralized asymptotic expansions for the integrals 
in the last formula. Specifically, we will neglect any formal Laurent series in siE' or 
S1-l E1/6-3 with a finite number of negative exponents and no constant term, and we 
also neglect multiples of log si. Since E log CA is independent of si, the lemma of 
Section 12 justifies simplifying the intermediate computations in this manner. We 
illustrate this procedure with some specimen calculations. 

1. Jf,s t3 t(t)dt = f t3it'(t) dt - f '1"' t3t'(t)dt. But f 8j" t3 t(t)dt is represented 
asymptotically by the term by term integration of J8o t3 41(t)dt (where ,6 is the formal 
power series expansion of 4l), which is a negligible series. Hence in the sense of 
neutralized computations 

t3i1 (t)dt = Jt3i (t)dt. 

2. The following computation is more complicated because it involves the ex- 
traction of a suitable leading part from the integrand before the previous calculation 
can be irnitated. First 

[ S1Eas1/ 6 lea-1/6 

J slf6/(a6 + 1)2 ds = J [(aS6 + 1)1/2 - a1,313 d 

because 
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sla 1 /2a6-/ 
a i/2silds= ? (slEa-/, 

--6 2 

which is negligible. We now observe that 

[?00 [?oo (s1o 1 /2 6- 

Slea-1/6[(6 ? 1)1/2 
_ 

al21II3lds Xjl j 1/21 l(6Ea1) (2 k s6as }ds 

If we imagine (but do not carry out!) the indicated termwise integration we again 
obtain a negligible series. Hence, proceeding as in computation 1, we obtain 

rs0f-1/6 XO 

J ae-1/ 6 (aS6 + 1 ) 1 /2ds = J [(as6 + 1)1/2 - a'/21SI aIds 

as the result of our neutralized calculation. 

3. Our final specimen calculation shows the exceptional role played by loga- 

rithmic terms. We compute jf's1e t-?l-'dt. As in the previous calculation we must 

extract the leading part of the integrand, in this case near t = 0. Using A-1' 

(i2)-1/2 (a + Olt + 02t2 + . it is easily established that 

t3l(t) = a-1/2t-3 _ 4 a-3/2 3it-2 

- 
(la X 

3/2 - 8 a-512/l2)t-1 + (t) 

where q (t) is infinitely differentiable. As above, we again modify the integrand by 

subtracting its leading part, the difference here being that the result of subtracting 

the t-1 term is not negligible. We obtain 

tA 3-F1 (t)dt IJ {t-3-1(t) _ a-1/2t-3 + I a-3/2: t-2 
Slfa Slf32 

+ (4 3/23 - /212) t-I 

- ((1 3 a 2 - 8 -5/2 2) t-ldt. 

But B fI t-ldt = -log si - a log e = -a log e, since -log s is negligible. Also the 

remaining integral flfI can now be replaced by f'. We thus obtain 

1 at-3 -'(t)dt = f {t-3'-' - a-1/2t-3 

+ 1 -3 /20Bt-2 + a1 -31/22 3 a-5/2/32)tl}ds 

+ a( - 1/22 _ 3 -5/2012) log e . 

Proceeding to compute neutralized values for the integrals appearing explicitly 

in (13-9) in this manner we obtain the asymptotic formulas (13-8). 

These formulas for the connectioin constants permit us to solve the following 

scattering problem. Since we have assumed that 4 + e = 1 for Itj > 1, the differ- 

ential equation has pure exponential solutions for t ? -1 and for t ? 1. The scatter- 

ing matrix relates the solution pair which has this form for positive t to the pair 

which has this form for negative t. Explicitly we have the following result. 

Scattering Formulas. Let ELI be the solution pair of (1-6) which has the form 
exp [ice't] for large negative t, and let ER? be the pair which has the same form 

for large positive t. Then 
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ERi(t, E) = C?(E) exp [i?(2/E)i]EL?(t, e) 

where the C?(E) are described asymptotically by formula (13-8). 
Proof. This follows immediately from YRi = exp [+i((t - 1)/e)] for t > 1 and 

YL? = exp [TFi((t + 1)/e)] for t < -1. Hence EL? = exp [Tit/E]YLT and ER? 
= exp [+it/E]YR?. Combining these relations with YR? = C?YLT we obtain the 
asserted relation. 
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